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Supplementary Figure 1. Experimental setup used to characterize the forward Brillouin spectrum

is shown in (a). The pulsed pump is generated using the setup in (b). PC: polarization controller;

AMP: electrical amplifier; EOM: electro-optic modulator; EDFA (erbium-doped fiber amplifier);

PM: in-line powermeter; BPF: band-pass optical filter; Pol: polarizer; Att: optical attenuator; PD:

photodiode; and ESA: electrical spectrum analyzer.
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Supplementary Figure 2. Forward Brillouin spectrum arising from the fundamental TR21 acoustic

mode. From the measured peak frequency (3.06 GHz), the wire diameter was determined to be

0.91 µm.
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Supplementary Figure 3. Experimental setup used to characterize the Brillouin backscattering

spectrum. PC: polarization controller; EDFA (Erbium-doped fiber amplifier); PM: powermeter;

BPF: band-pass optical filter; PD: photodiode; AMP: electrical amplifier; and ESA: electrical

spectrum analyzer.
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Supplementary Figure 4. (a) Optical mode e↵ective index and acoustic mode phase velocity

for the R01 mode as a function of wire diameter. In (b), the resultant Brillouin frequency shift is

shown as a function of diameter.
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SUPPLEMENTARY NOTE 1: NONLINEAR POLARIZATION

The macroscopic Maxwell equations in the time domain for a nonmagnetic medium with

no free-charges are:

r·D = 0,

r·H = 0,

r⇥ E = �µ0@tH,

r⇥H = @

t

D.

(1)

Here D = "0✏E + PNL is the electric displacement field, "0 is the vaccum permittivity,

✏ is the relative dielectric permittivity and µ0 is the vacuum permeability. The nonlinear

polarization PNL induced by an acoustic wave is written in the time domain as:

PNL (t) = "0�✏ (t) ·E (t) , (2)

where �✏ is the relative permittivity perturbation caused by the acoustic wave. For a

harmonic perturbation, the relative permittivity perturbation can be written as:

�✏ (t) =
1

2
�✏ (x, y) e�i(⌦t��az) + c.c., (3)

where �✏ (x, y), ⌦ and �

a

are the perturbation transverse profile, angular frequency and

propagation constant respectively. Since our interest is to investigate backward Brillouin

scattering, we write the total field as the sum of a pump signal at !p and a backward

propagating signal at !s. We restrict our development to the Stokes line so that !s = !p�⌦

(generalization to the anti-Stokes line at !
as

= !p + ⌦ is straightforward). We use the

sub-index p to denote the pump field (propagating in the forward direction) and s to denote

the scattered field propagating in the backward direction. We assume both fields as pure

harmonics:

Ep (r, t) =
1

2
ap (z)Ep (x, y) e

�i(!pt��pz) + c.c.

Es (r, t) =
1

2
as (z)Es (x, y) e

�i(!st+�sz) + c.c..

(4)

Note that the power carried by each signal is simply Pn = sn
1
2 |an|

2
Re

⇥R
(En ⇥H⇤

n) ·ẑdA
⇤
.

From now on, Ep,s denotes the transverse field profile Ep,s (x, y). The factor sp = +1 for
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the pump (co-propagating) and ss = �1 for the Stokes signal (back-propagating) are used

so that the optical power is always positive. We can always normalize the eigenmodes so

that sn
1
2Re

⇥R
(En ⇥H⇤

n) ·ẑdA
⇤
= 1 W, and then at any position along the waveguide the

power carried by the eigenmode n is simply Pn = |an|2 ·1 W. We calculate the polarization

generated by the pump field (i.e. neglecting the nonlinear polarization caused by the Stokes

and anti-Stokes fields since in our experiments they are much weaker than the pump),

obtaining:

PNL (t) =
"0�✏

4
apEp (x, y) e

�i[!ast�(�p+�a)z] +
"0�✏

⇤

4
apEp (x, y) e

�i[!st�(�p��a)z] + c.c.. (5)

The first and the second terms are respectively the source terms for the anti-Stokes and

Stokes scattered signals. Since we neglected the nonlinear polarization caused by the Stokes

and anti-Stokes, there is no source term at the pump frequency !p (neither at high-order

scattering such as !p ± 2⌦). This approximation implies a constant pump field amplitude

along the waveguide, ap (z) = ap (in other words, pump depletion is neglected).

Perturbation theory

The nonlinear polarization is treated as a perturbation term in Maxwell equations. We

apply standard perturbation theory to calculate the evolution of the Brillouin backscat-

tered signal amplitude as (z) along the waveguide. In the linear regime (PNL = 0), the

macroscopic Maxwell equations for a harmonic field Ee

i!t (specifically the curl equations in

Supplementary Equation 1) can be written in terms of operators as:

A | i = �i@

z

B | i , (6)

where | i =

2

4 E

H

3

5, and the operators are defined as:

A =

2

4 !"0✏ �ir
t

⇥

ir
t

⇥ !µ0

3

5
, (7)

B =

2

4 0 �ẑ⇥

ẑ⇥ 0

3

5
. (8)

For a waveguide, the solution to Supplementary Equation 6 is of the form:
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| ni =
1

2
ane

i�nz |'ni , with |'ni =

2

4 En (x, y)

Hn (x, y)

3

5
, (9)

where En and Hn are the field profiles for a specific eigenmode, and �n is the propagation

constant (eigenvalue) at frequency !. In the linear regime an is a constant. Substituting 9

into 6, we obtain a generalized eigenvalue problem:

A |'ni = �nB |'ni , (10)

which for the back-propagating Stokes line becomes A |'si = ��sB |'si (where the negative

sign arises naturally from the e�i�sz dependence). The nonlinear polarization can be formally

introduced as a perturbation term �A added to the operator A. For instance, from all the

terms in the expression for the nonlinear polarization, the term oscillating at the Stokes field

(e�i!st) is:

PNL (t) =
"0�✏

⇤

4
apEp (x, y) e

�i[!st�(�p��a)z]
, (11)

In the presence of this term, Maxwell equations for the field oscillating as e�i!st can again

be cast in operator form as:

ase
�i�sz

A |'si+ ape
i(�p��a)z�A |'pi = �i (@

z

as � i�sas) e
�i�sz

B |'si , (12)

where the perturbation operator is:

�A =

2

4
!s"0
2 �✏⇤ 0

0 0

3

5
. (13)

Using the generalized eigenvalue equation (Supplementary Equation 10) for the Stokes

signal, the first term on the left-hand side of Supplementary Equation 12 cancels with the

second term on the right-hand side, which leads to:

@

z

as = �iape
i��z, with  =

h's|�A|'pi
4

. (14)

The phase mismatch is �� = �p + �s � �

a

and  is the coupling coe�cient. In the

definition of the coupling coe�cient , we used the mode normalization

h's|B|'si = 2<
Z

(En ⇥H⇤
n) ·ẑdA

�
= 4ss[W] = �4[W], (15)
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since ss = �1. Note that this normalization guarantees that the unit of  is m�1. The

solution to Supplementary Equation 14 is:

as (0) = �iap
1� e

i��L

i��
, (16)

Ps = Pp||2L2sinc2
✓
��L

2

◆
. (17)

We have assumed that as (L) = 0, where L is the waveguide length, and Pp is the pump

power. In particular, for the case of perfect phase-matching �� = 0, the total backscattered

signal amplitude and power are given by:

as = �iapL, (18)

Ps = Pp||2L2
. (19)

Although one might be drawn to conclude that the scattered power increases with the

square of the waveguide length L, this is not correct. We show below that acoustic nor-

malization (with k

B

T of energy per mode) results in a L

�1/2 dependence for the coupling

coe�cient, which combined with the L2 factor in Supplementary Equation 19, yields a linear

dependence of scattered power on the waveguide length.

The calculation of the inner product h's|�A|'pi in the coupling coe�cient (Supplemen-

tary Equation 14) must be performed with care. For the photo-elastic e↵ect, the perturbation

�✏ caused by a mechanical strain is su�ciently small so that  is simply

pe =
!s"0

8

Z
E⇤

s ·�✏⇤pe ·EpdA, (20)

where �✏pe = �n

4p·S. However, in the case of a moving boundary, �✏ is simply n

2
1 � n

2
2,

the di↵erence in the relative permittivity between region 1 (wire core) and region 2 (air

cladding). This perturbation is not small even for infinitesimal acoustic displacement and

the field discontinuity must be taken into consideration. In this case, the correct expression

for the coupling coe�cient is [1]:

mb =
!s"0

8

I
(u·n̂)

⇥
�✏⇤mbE

⇤
s,k ·Ep,k +�

�
✏

�1
mb

�⇤
E⇤

s,? ·Ep,?
⇤
dl, (21)

where �✏mb = n

2
1 � n

2
2 and �

�
✏

�1
mb

�
=

�
n

�2
2 � n

�2
1

�
n

4
2 and the normal component of the

electric field is evaluated in the region 2 (air cladding) to correctly take into account the

field discontinuity. Note that u·n̂ is the normal component of the acoustic displacement cal-

culated at the boundary, which in a cylindrical nanowire is simply the radial displacement
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component at the boundary us. The integral is performed along the waveguide circular

boundary. Supplementary Equations 20 and 21 were used to calculate the coe�cients in

Figures 2d-f. In these figures,  was calculated for acoustic modes normalized to thermal

energy (at 300 K), and the factor L

1/2 scales the normalization to any waveguide length

(this is developed in detail in the next section). For example, Figure 2d gives the prod-

uct L1/2 for a wire with with 0.55 µm in diameter and so, for the R01 acoustic mode,

L

1/2 = 4.5·10�5 m�1/2. Using L = 0.08 m, we then obtain  = 1.6·10�4 m�1. The total

scattered power can be calculated using Supplementary Equation 19, and for a 1 W input

pump power, the Stokes scattered power is approximately 170 pW.

Acoustic mode normalization and scattered light spectrum

Each acoustic mode carries a k

B

T of energy. Since the time average kinetic and potential

energies are equal, we simply normalize the acoustic mode by making its average kinetic

energy as E
k

= 1
2kBT . We write the acoustic field for a given mode identified with a sub-

index l as:

u
l

(x, y, z, t) =
1

2
u

l

U
l

(x, y) e

i(⌦lt��lz) + c.c., (22)

where, u
l

is the field amplitude (units of m) and U

l

(x, y) is the transverse mode profile

(adimensional) normalized so that max |U
l

(x, y)| = 1, and �
l

is the propagation constant of

mode l evaluated at the acoustic frequency ⌦
l

. The average kinetic energy is then:

E
k

=

Z
1

2
⇢

*����
@u

l

@t

����
2
+
dV =

1

4
⇢⌦2

l

|u
l

|2L
Z

|U
l

(x, y)|2dA ) |u
l

|2 = 4E
k

⇢⌦2
l

A

l

L

, (23)

where E
k

= 1
2kBT and A

l

=
R
|U

l

(x, y)|2dA. The last integral is performed over the waveg-

uide cross-section area. We redefine the coupling coe�cient so that the dependence on the

acoustic amplitude u

l

(determined by thermal energy) becomes explicit:

 = ku

l

. (24)

In this way, k is fully determined by the modal profiles (optical and acoustic), and has unit

of m�2. Explicitly, for the moving boundary e↵ect we have:

kmb =
!s"0

8

I
dl (U

l

·n̂)
�
n

2
1 � n

2
2

�
E⇤

s,k ·Ep,k +
�
n

2
1 � n

2
2

�
n

2
2

n

2
1

E⇤
s,? ·Ep,?

�
dl. (25)

Similarly, for the photo-elastic e↵ect we have:

kpe =
!s"0

8

Z
E⇤

s ·
�
�n

4p·S
�
·EpdA, (26)
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where S
ij

=1
2

⇣
@

@xj
U

l,i

e

�i�lz + @

@xi
U

l,j

e

�i�lz

⌘
is the strain created by the acoustic mode l

divided by the thermal amplitude of the field u

l

. With this definition, the total scattered

power (assuming perfect phase-matching) becomes:

Ps = Pp|kl|2L
4E

k

⇢⌦2
l

A

l

= Pp|kl|2L
2k

B

T

⇢⌦2
l

A

l

. (27)

In deriving Supplementary Equation 27, we assumed that the acoustic field is harmonic

and therefore the spectrum of the scattered light is single-frequency. In the presence of

dissipation, the acoustic energy will be distributed over a Lorentzian spectrum. In order

to calculate backscattered light spectrum, we simply write the acoustic energy spectrum

density as

E (⌦) = E
k

�/⇡

(⌦� ⌦
l

)2 + �2
, (28)

so that
R1
0 E (⌦) d⌦ = E

k

, and �/2⇡ is the Brillouin linewidth (in units of Hz). Therefore,

the power spectrum density of scattered light becomes:

S
s,l

(!) = Pp|kl|2L
2k

B

T

⇢⌦2
l

A

l

�/⇡

(! � !p + ⌦
l

)2 + �2
. (29)

For an instrument with frequency resolution �f (in units of Hz), the measured power (in

W) in a 1 Hz resolution will be:

Ps[W in bandwidth �f ] = S
s,l

(!)�! = S
s,l

(!) 2⇡�f

= Pp|kl|2L
2k

B

T

⇢⌦2
l

A

l

2��f

(! � !p + ⌦
l

)2 + �2
.

(30)

Finally, the scattered power per unit of frequency (W/Hz) normalized by the pump power

and the waveguide length is:

Ss

PpL
= |k

l

|2 2kBT
⇢⌦2

l

A

l

2�

(! � !p + ⌦
l

)2 + �2
. (31)

This result is used to generate the theoretical Brillouin backscattering spectrum in Fig-

ures 3a, 3b and 4a.
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SUPPLEMENTARY NOTE 2: EXPERIMENTAL SETUP

Diameter characterization

Forward Brillouin scattering arises from an acoustic wave that oscillates transversally at

the cut-o↵ point (�
a

= 0). Therefore, the observed Brillouin frequency shift is exactly the

acoustic cut-o↵ frequency. For a cylindrical rod, the cut-o↵ frequency is inversely propor-

tional to the wire diameter [2–4], and can be obtained by applying the free-surface boundary

condition. For example, for the axially asymmetric torsional-radial (TR2m) mode, f
m

=

2y
m

v

T

/⇡d, where y

m

are the numerical solution of the transcendental equation:

J1(y)
�
8
�
↵

2 � 1
� �

y

2 � 6
�
J1(y↵) + 4↵y

�
y

2 � 6
�
J0(y↵)

�
+

J0(y)
�
2y

�
↵

2
�
y

2 + 12
�
+ y

2 � 24
�
J1(y↵)� ↵y

2
�
y

2 � 24
�
J0(y↵)

�
= 0

(32)

Note that this equation depends only on the parameter ↵ = v

T

/v

L

, the ration between the

shear and longitudinal bulk acoustic velocities, which for silica is approximately 0.63. The

numerical solution for the fundamental TR21 mode is y1 = 2.34. Therefore, by measuring the

forward Brillouin scattering frequency shift for the TR21 mode, we can accurately determine

the wire diameter by d = 2y1vT/⇡ f1.

The experimental setup used to characterize the forward Brillouin spectrum on our

nanowires is based on a pump-and-probe technique, and is shown in Supplementary Fig-

ure 1. The fundamental TR21 acoustic mode is excited using a pulsed laser source (pulse

duration of 25 ps, repetition rate of 1 MHz and wavelength at 1570 nm). A probe contin-

uous laser operating at 1550 nm is combined with the pump signal and launched into the

silica nanowire. At the output, the pump laser is filtered out and the probe inserted into

a polarizer in order to convert polarization modulation into amplitude modulation. The

modulated signal is then amplified with an optical pre-amplifier and detected in a high-

speed photodiode. Finally, the signal is analyzed in an electrical spectrum analyzer, and the

peak frequency determined. The pulsed pump signal was generated using an Pulse Signal

Generator and an Electro-Optical amplitude modulator. After modulation, the signal is

pre-amplified using an pre-EDFA and then injected into a high-power EDFA (this is simply

to saturate the high-power amplifier and reduce spontaneous emission). A small fraction

(⇠)1% of the pump power is detected using a photodiode and monitored in a oscilloscope.
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Supplementary Figure 2 shows an example of the forward Brillouin spectrum measured.

The peak observed is due to the fundamental TR21 mode and the measured frequency is

3.07 GHz, from which the wire diameter was determined to be 0.91 µm. All samples were

characterized using this methods.

Brillouin backscattering experimental setup

The setup used to characterize the backward Brillouin spectrum is similar to the one

described in [5], and is shown in Supplementary Figure 3. A 1550 nm narrow-linewidth

diode laser (⇠100 kHz linewidth) was amplified with an EDFA (with 27 dBm output power)

and launched into the silica nanowires using a circulator. The backscattered Brillouin signal

is collected on port 3 of the circulator. Along with the frequency shifted Brillouin signal,

a small linear reflection of the pump signal (non-frequency shifted) is used as a reference

for heterodyne detection. These two signals (reference and Brillouin signal) are amplified

using a low-noise Erbium doped fiber pre-amplifier, detected in a high-speed PIN photodiode

(> 20 GHz bandwidth), amplified electrically in a low noise radio-frequency pre-amplifier

and dispersed in an electrical spectrum analyzer.
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SUPPLEMENTARY NOTE 3: BRILLOUIN FREQUENCY SHIFT vs. WIRE

DIAMETER

The evolution of the Brillouin frequency with diameter shown in Figure 4c can be un-

derstood by evaluating both optical and acoustic dispersion relations. The phase-matched

acoustic frequency is f
ac

= 2ne↵vac/�, where � is the optical wavelength, ne↵ is the optical

mode e↵ective index and v

ac

is the phase velocity for a given acoustic mode. Therefore, the

Brillouin frequency behavior depends on how ne↵ and v

ac

vary with the nanowire diameter,

as shown in Supplementary Figure 4a. The e↵ective index decreases monotonically as the

diameter is reduced due to increasing di↵raction that spreads the optical energy out into

the air cladding. Thus the e↵ective index contributes to reduce the acoustic frequency f

ac

as

the diameter is reduced. On the other hand, the acoustic phase velocity v

ac

always increases

as the diameter is reduced (from the lower limit referred to as Rayleigh velocity v

R

to its

maximum bulk longitudinal value v

L

), and thus its contribution is to increase the acoustic

frequency f

ac

. The resultant frequency is shown in Supplementary Figure 4b. Note that

f

ac

first decreases before it increases again when the diameter is reduced (from right to left

in Supplementary Figure 4b). This behavior has its origin in the fact that that di↵raction

of the optical mode into the cladding occurs at a wire diameter comparable to the opti-

cal wavelength while the acoustic phase velocity is only a↵ected when the wire diameter is

comparable to the acoustic wavelength. Since the optical wavelength is twice the acoustic

wavelength (as required by the phase-matching condition), it means that the reduction of

ne↵ impacts the Brillouin frequency f

ac

before v

ac

does. This trade-o↵ between how fast

the optical e↵ective index drops and how fast the phase velocity of acoustic Rayleigh waves

increases as diameter becomes smaller determines the behavior of the acoustic frequency

observed in Figures 4c.

SUPPLEMENTARY REFERENCES

1. Johnson, S. G. et al. Perturbation theory for Maxwell’s equations with shifting material

boundaries. Phys. Rev. E 65, 066611 (6 June 2002).

2. Shelby, R. M., Levenson, M. D. & Bayer, P. W. Guided Acoustic-Wave Brillouin-Scattering.

Physical Review B 31, 5244–5252 (1985).

12



3. Kang, M. S., Brenn, A., Wiederhecker, G. S. & Russell, P. S. Optical excitation and char-

acterization of gigahertz acoustic resonances in optical fiber tapers. Applied Physics Letters

93, 131110 (2008).

4. Dainese, P. et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber.

Optics Express 14, 4141–4150 (May 2006).

5. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in

nanostructured photonic crystal fibres. Nature Physics 2, 388–392 (June 2006).

13


	Brillouin Scattering Self-Cancellation
	References
	Supplementary References


